博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
蒙特卡洛算法(转 用来说明算法导论题目!!!)
阅读量:5008 次
发布时间:2019-06-12

本文共 1506 字,大约阅读时间需要 5 分钟。

本文通过五个例子,介绍(Monte Carlo Method)。

一、概述

蒙特卡罗方法是一种计算方法。原理是通过大量随机样本,去了解一个系统,进而得到所要计算的值。

它非常强大和灵活,又相当简单易懂,很容易实现。对于许多问题来说,它往往是最简单的计算方法,有时甚至是唯一可行的方法。

它诞生于上个世纪40年代美国的"曼哈顿计划",名字来源于赌城蒙特卡罗,象征概率。

二、π的计算

第一个例子是,如何用蒙特卡罗方法计算圆周率π。

正方形内部有一个相切的圆,它们的面积之比是π/4。

现在,在这个正方形内部,随机产生10000个点(即10000个坐标对 (x, y)),计算它们与中心点的距离,从而判断是否落在圆的内部。

如果这些点均匀分布,那么圆内的点应该占到所有点的 π/4,因此将这个比值乘以4,就是π的值。通过R语言随机模拟30000个点,π的估算值与真实值相差0.07%。

三、积分的计算

上面的方法加以推广,就可以计算任意一个积分的值。

比如,计算函数 y = x2 在 [0, 1] 区间的积分,就是求出下图红色部分的面积。

这个函数在 (1,1) 点的取值为1,所以整个红色区域在一个面积为1的正方形里面。在该正方形内部,产生大量随机点,可以计算出有多少点落在红色区域(判断条件 y < x2)。这个比重就是所要求的积分值。

用Matlab模拟100万个随机点,结果为0.3328。

四、交通堵塞

蒙特卡罗方法不仅可以用于计算,还可以用于模拟系统内部的随机运动。下面的例子模拟单车道的交通堵塞。

根据 Nagel-Schreckenberg 模型,车辆的运动满足以下规则。

  • 当前速度是 v 。
  • 如果前面没车,它在下一秒的速度会提高到 v + 1 ,直到达到规定的最高限速。
  • 如果前面有车,距离为d,且 d < v,那么它在下一秒的速度会降低到 d - 1 。
  • 此外,司机还会以概率 p 随机减速, 将下一秒的速度降低到 v - 1 。

在一条直线上,随机产生100个点,代表道路上的100辆车,另取概率 p 为 0.3 。

上图中,横轴代表距离(从左到右),纵轴代表时间(从上到下),因此每一行就表示下一秒的道路情况。

可以看到,该模型会随机产生交通拥堵(图形上黑色聚集的部分)。这就证明了,单车道即使没有任何原因,也会产生交通堵塞。

五、产品厚度

某产品由八个零件堆叠组成。也就是说,这八个零件的厚度总和,等于该产品的厚度。

已知该产品的厚度,必须控制在27mm以内,但是每个零件有一定的概率,厚度会超出误差。请问有多大的概率,产品的厚度会超出27mm?

取100000个随机样本,每个样本有8个值,对应8个零件各自的厚度。计算发现,产品的合格率为99.9979%,即百万分之21的概率,厚度会超出27mm。

六、证券市场

证券市场有时交易活跃,有时交易冷清。下面是你对市场的预测。

  • 如果交易冷清,你会以平均价11元,卖出5万股。
  • 如果交易活跃,你会以平均价8元,卖出10万股。
  • 如果交易温和,你会以平均价10元,卖出7.5万股。

已知你的成本在每股5.5元到7.5元之间,平均是6.5元。请问接下来的交易,你的净利润会是多少?

取1000个随机样本,每个样本有两个数值:一个是证券的成本(5.5元到7.5元之间的均匀分布),另一个是当前市场状态(冷清、活跃、温和,各有三分之一可能)。

模拟计算得到,平均净利润为92, 427美元。

七,参考链接

  • ,by Alex Woods
  • ,by 王晓勇

转载于:https://www.cnblogs.com/zpfbuaa/p/5090319.html

你可能感兴趣的文章
JVM垃圾回收机制
查看>>
结对编程2 微软学术搜索 第一部分——功能性bug
查看>>
StarUML
查看>>
程序员需要有多懒 ?- cocos2d-x 数学函数、常用宏粗整理 - by Glede
查看>>
利用Clojure统计代码文件数量和代码行数
查看>>
课时23:递归:这帮小兔崽子
查看>>
RobotFrameWork接口报文测试-----(三)demo的加强版(数据驱动测试)
查看>>
NetBeansRCP-添加/修改NetBeans的JVM启动参数
查看>>
Linux c获取时间
查看>>
css中设置background属性
查看>>
第九周作业
查看>>
[leedcode 70] Climbing Stairs
查看>>
学习 WCF (1)--基础篇
查看>>
sql server 2008学习4 设计索引的建议
查看>>
vim 插件之vundle
查看>>
数据库多对多关联表(Python&MySQL)
查看>>
[实变函数]1.2 集合的运算
查看>>
第06天
查看>>
设计模式的征途—5.原型(Prototype)模式
查看>>
Fiddler中添加serverIP
查看>>